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Lattice dynamics of rare-earth semiconductors with 
unstable valence 

A S Mishchenko and K A Kikoin 
I V Kurchatov Institute of Atomic Energy, 123182 Moscow, USSR 

Received 5 March 1991 

Abstract. The phonon spectra of rareearth (RE) semiconductors with integer and mixed 
valence (EuS. SmS, TmSe) are calculated within the generalized charge-density distortion 
model. The model includesinteraction oflattice vibrationswiththe valenceshellercitations, 
both local (usual dipole excitations in unfilled shells of RE ions) and non-local breathing 
modes describing the valence fluctuations. The relative contribution of these excitations 
to phonon reoormahtion is traced along the row of RE semiconductors with rock-salt 
stmctwe. 

1. Introduction 

The lattice dynamics of rare-earth (RE) semiconductors with unstable valence (Sm and 
Tm chalcogenides and Sm hexaboride) is described in general terms by the charge- 
density deformation (CDD) model proposed by Allen more than 10 years ago (Allen 
1977). This theory explained in general the anomalies in the LA [l 1 11 branch of the 
phonon spectra of SmS and TmSe (Bib era1 1979, Bennemann and Avignon 1979, Entel 
er& 1979, Matsuura eta[ 1980, Wakabayashi 1980, Ichinose and Kuroda 1982, Ichinose 
andTamura 1983). Although these authors refer to the valence fluctuations as the source 
of the breathing charge mode, there is no real microscopic substantiation of the valence 
fluctuation contribution to the dynamic matrix because of many simplifications 
accompanying the calculation of the electron-phonon renormalization of the phonon 
spectra. Moreover, detailed analysis of the theoretical spectra shows some mismatches 
between the theory and experiment in both acoustic and optic branches. 

In this paper we present a careful theoretical description of the phonon spectra of 
mixed-valence (MV)  semiconductors with the rock-salt crystal structure in comparison 
with the ‘reference’ system EuS. When analysing the discrepancies between the theory, 
including breathing and dipole CDD modes, and the experimental data, we see the need 
to generalize the standard theory of local CDD modes and include the spatial dispersion 
of these modes, which in turn gives additional wavevector dispersion in the phonon 
renormalization, substantially improving the consistency between theory and exper- 
iment. 

We propose microscopic grounds of non-local charge distortions specific for the 
mixed-valence systems. These are the anomalously soft fully symmetric excitonicmodes, 
which are treated as the main source of valence fluctuations in the hw state of a semi- 
conductor. The theory was checked recently by applying its results to an MV semi- 
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conductor with other than rock-salt symmetry, v u  to SmB,, for which phonon spectra 
were measured by the inelastic neutron spectroscopy method (Alexeev ef ai 1989). 

We also analyse all other contributions to the phonon spectra of the RE semi- 
conductors (long-range Coulomb forces, dielectric screening, impurity contamination, 
etc) and find that detailed analysis of dynamic properties strongly supports the micro- 
scopic picture of excitonic instability as a source of the phase transition from normal to 
MV semiconductor state of the RE compounds (Stevens 1976, Kikoin 1984). 

A S Mishchenko and K A Kikoin 

2. Microscopic grounds of the CDD model for RE semiconductors 

Our description of the lattice dynamics in RE semiconductors is based on the microscopic 
theory of the electron-phonon interaction in semiconductors with unstable valence, 
which was proposed in previous papers (Kikoin and Mishchenko 1988,1990; hereafter 
referred to as KMI and mu). The theory starts from the adiabatic procedure, which 
includes in the dynamic matrix the c~~con t r ibu t ions  (Allen 1977) 

D(q) = D Y q )  + DCDD(d (2.1) 

where P ( q )  is the Kellermann-type dynamic rigid-ion (RI) matrix for the purely ionic 
crystal, and the CDD component can be expanded as 

DmD(q) = Dr(q). (2.2) 
r 

This expansion reflects the possibility of classifying the CDD according to the irreducible 
representations of the crystal point group because of the local character of these elec- 
tronic modes, which in turn can be expressed via the partial components of the charge- 
density response function xr 

Dr(q) = W1 e~Rn-Rm)(OIVmHe,(r, R)Xr(r, r')VnHei(r',R)lO) (2.3) 
m.0 

where 

xr(r,$) = IB')(B'I/(@ - 

R, are the lattice site indices, Hei is the electron-ion interaction Hamiltonian, and le') 
are the excited states of the electronic subsystem with point symmetry r a n d  excitation 
energy E L .  Various sources of the CDD modes were discussed in the literature (see e.g. 
Bib. and Kress 1979). We believe that in the RE semiconductors with unstable valence 
these are mainly exciton modes describing the charge distortions in unfilled f shells of 
lanthanideions. It iswell known from band structure calculationsthat the electronsfrom 
the4fshellformaverynanowuppervalence band, and theoverlappingwavefunctionsof 
5d levels, which are empty in the ground state, form the lower part of the conduction 
band, at least in the RE chalcogenides with NaCl crystal structure. Hence there are 
several sources of local CDD induced by the f-d transitions. These are the interband 
transitions and intrashell Frenkel-type f-d excitations, which are commonly used to 
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explain the origin of monopole (breathiig) and dipole CDD modes. These states can be 
presented as 

IB;;id) = N-' b$+l,,bi,.~O)exp[-iq~Rj - i(k + q)-RI] (2.4) 

IBZ) = N-'p b t  b.. "10) e x p h  Rj) (2.5) 

j.1 

1 

respectively. Here indices c, v stand for the conduction and valence band states, 10) is 
the ground state of the semiconductor with filled valence band and empty conduction 
band, and index r of the point group irreducible representation is defined by the 
symmetry of the intrasite transition. Really r = r, for f-d transition in the deformable 
shell of Sm ions. In K M I  and KMII we have proposed another source of monopole 
excitations. We think that the local charge distortions are naturally described in terms 
of intermediate-radius excitons 

Here F(r) is the envelope function characterizing the spatial extension of the exciton. It 
was shown by Stevens (1976) and Kikoin (1984) (see also KMII) that the singlet exciton, 
i.e. the excited state of the same symmetry 'FO as the ground state of the Sm f shell, 
can be constructed by using an appropriate linear combination of conduction band d 
functions. This exciton can be treated as the source of relatively soft monopole (breath- 
ing) CDD with r = r: in integer-valencecompoundslike black SmS(,). Thegroundstate 
of the mixed-valence compounds (gold SmS(G, and SmB,) according to the theory of 
excitonic instability (Stevens 1976, Kikoin 1984) is considered as the bonding com- . 
bination of ground and excited 'FO states of 'normal' semiconductor. Then the anti- 
bonding combination of these two states forms extremely soft monopole excitation 
specific for the mixed-valence semiconductor. This excitation greatly enhances the 
breathing CDD contribution to the dynamic matrix and can be treated as the main source 
of the anomalies in the phonon spectra. 

Although the anomalously soft f-f electronic transitions were seen directly in the 
optical spectra of gold SmS.) and SmB, (Travaglini and Wachter 1985), the idea of 
exciton-phonon renormalization of the phonon spectra should be carefully checked. 
We suppose that the non-local character of the excitonic contribution to the breathing 
CDD is a decisive moment that allows the verification of our proposals. 

It was shown in KMII that in most cases the CDD contribution to the phonon frequency 
renormalization can be factorized as 

Aro& = AF)O(')(q, oq,+) (2.7) 
where the net q dependence of renormalization of the phonon branch CY entering the 
form factor Q(r) depends only on the type of lattice and CDD symmetry, and the coupling 
strength A L !  is determined by the physical mechanisms 'switching on' this mode. It is 
clear that the spatial extension of the mode gives an additional contribution to the q 
dependence of form factor @(r'(q), in comparison with the conventional local theory 
(Allen 1977), and this characteristic dependence allows one to detect the possible non- 
local contributions to the phonon renormalization. 

Using the second-order approximate expression (2.7) for the phonon renormaliz- 
ation, we have shown in KMI and KMII that the quantitative consistency of the theory 
describing the CDD renormalization with the measured LA phonon dispersion in gold 
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SmS(G), can be improved essentially when accounting for the non-local character of CDD 
breathmg mode. Here we use the more systematic approach including the non-local 
corrections directly to the dynamic matrix. In the case of two-sublattice crystal structure 
the CDD contribution (2.2) to this matrix can be represented in the form 

A S Mishchenko and K A Kikoin 

where GP: and G$ are the standard CDD factors for the nearest-neighbour (NN) and 
next-nearest-neighbour (NNN) breathing interactions (AUen 1977) and R,; is an 
additional ‘covalent’ factor due to the non-local character of the electron excitations 
B,f in (2.3) and (2.6). This covalent contribution in second-order perturbation theory 
results in additional q dependence of phonon renormalization, which takes the form 

= c m q ,  w,,w:(q, wq0) (2.9) 

where indiceso, 1 stand forthestandard point CDDandnon-localcorrection form factors, 
respectively. 

When detectingthe specific contribution of the soft CDD modes in RE semiconductors 
with unstable valence, we follow the procedure proposed in KMII, i.e. we study first the 
‘reference system’ with stable valence in the framework of the standard CDD theory, and 
then compare the results of phonon calculation for the MV systems within the full non- 
local theory using dynamic matrix (2.1), (2.2) and (2.8) with the standard phonon 
branches of the normal RE semiconductor. Hence we can give a quantitative estimation 
of abnormal contribution to the electron-phonon renormalization, and speculate about 
the physical nature of that renormalization. We choose for the reference system the 
compound EuS, which is the closest neighbour of SmS in the row of RE chalcogenides 
having stable valence of 4f ion at ambient pressure. 

3. Europium sulphide 

Inelastic neutron scattering measuremenu of the phonon spectra are absent for EuS, 
and hence the phonon spectrum was restored from the macroscopic data, i.e. elastic 
moduli, dielectric susceptibility and ion polarizabilities, using only two phonon Ere- 
quencies wLo(I‘) and wTo(r) (Zeyher and Kress 1979) in a framework of the overlap 
shell model (OSM) (see e.g. Bilz and Kress 1979, Bilz etal 1975). Zeyer and Kress used 
their spectra for calculating the Raman spectra and comparing them with the experiment 
of Giintherodt etal (1979). The excellent agreement between the theory and experiment 
allows us to consider these restored spectra as the basic ones for EuS. It should be 
noted, however, that the theoretical description within theos~approach isinconsistent, 
because this model takes into account only the dipole CDD mode, whereas a more 
detailed symmetry analysis of the partial CDD contributions to the polarized Raman 
spectra shows the dominant contribution of the r: component of CDD on Eu ion to the 
first-order Raman spectrum in EuS. 

Hence, we fit the ‘basic’ phonon spectrum of Zeyher and Kress (1979) by varying the 
parameters of our CDD model and include the breathing mode G r; G, to the dynamic 
matrix (2.8). Among the macroscopic force parameters the sulphur polarizability as is 
the most unreliable one. Zeyher and Kress used the value as obtained by Tessman el a1 
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Figure 1. Calculated phonon spectrum of 
EuS in the modified model of Zeyher and 
Kress (1979). The sulphur polmabiliry 
a,=J.408. is taken lower than that in 
Tcssmanerol(l953). Monopolar CDD par. 
ametcr G ,  = 0.142 e'V-'.Thetheorctical 
CUNCS are denoted as: (-) LA. LO: 
( - - - )TAI ,  TOI; (... ..) TAI, TOo1 

(1953) on the assumption of additivity of partial ion contributions to the total pola- 
rizability. This assumption is not so good for sulphides, and gives too high value of CY, as 
can be seen from general expressions for the polarizability (Woods eta1 1960). Hence, 
we varied as in a certain interval and defined the corresponding values of GI by fitting 
the LO(L) frequency of EuS, which is known from the polarized Raman scattering 
spectra. When lowering as from Tessman's value of 4.70 8, down to the value of 1.70 A, 
we obtained values of GI from 0 up to 6.53 ezV-'. We have seen that varying as 
practicallydid not influence the form of the phonon spectra. Figure 1 shows the typical 
EuS spectrum. 

Our analysis shows that, although the fully symmetric r: CDD mode should be 
introduced for the sake of complex description of the experimental data on the vibration 
spectrum, its value is small, and the real CDD contribution cannot be defined trustfully 
from fitting the theoretical curves to the experimental data available. 

4. Samarium sulphide, black phase 

We fitted our theoretical curves to the experimental neutron scattering spectra of 
Birgenau and Shapiro (1977). The LO branch of 'black' samarium sulphide (SmS(,)) was 
not measured in that experiment, so we used the values wL0)(r) = 7.26 THz obtained 
from the optical measurements of dielectric response (Hillebrands and Giintherodt 
1984) and wLo(L) = 6.0 THz found in a Raman scattering experiment (Giintherodt et 
a1 1981b). Symmetry degeneration of  LO[^ 001 and  TO,[^ 101 frequencies at the X point 
gives us the third point in the LO branch. 

The fitting procedure can be treated as the search for the global minimum of RMS 
deviation among many local ones in a multidimensional space of model parameters. We 
have tried severaldifferent fitting procedures and found that the best description of both 
macroscopic and microscopic data can be obtained within a framework of the model 
using measured dispersion curves together with the macroscopic elastic moduli and 
dielectric characteristics of the lattice. Various modifications of this 'hybrid model' are 
described in the appendix. 
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General softening of the electron excitation spectrum in SmScB) in comparison with 
EuS implies the growing contribution of the CDD modes to the phonon renormalization 
(KMI, KMII). The usual description of the phonon spectra in SmS includes dipole CDD for 
both sublattices and breathing CDD for Sm ions (see e.g. Bilz et al1979, Guntherodt et 
al 1981a). Calculated phonon spectra can be well fitted to the experimental points in 
[110] and [ill] directions; however, the unusual softeningof~o[lOO] branch near the 
X point discovered by Birgenau and Shapiro (1977) was not reproduced in those fittings. 
Using the general list of form factors (tables 1 and 2 in KMII) we find that the only source 
of such CDD renormalization (in NN approximation) is the tetragonal deformation mode 
Tg, Taking into account the symmetry of initial and final states for the local excitation 
from the top of the f valence band (r,) to the d(tZg) conduction band (r:) (see e.g. 
Lopez-Aguilar and Costa-Quintana 1986), we find the selection rule for admissible 
lattice distortions that can be involved in this transition 

r, @r& = r, + rg +r; + riz. (4.1) 

Only two of the former modes can be realized as NN distortions in the NaCl lattice. All 
our fits demonstrate the decisive part of TG in describing the  TO[^ 0 01 anomaly. 

The conventional dipole distortion mode ri5 mainly influences the longitudinal 
branches of the vibration spectrum. This contribution, however, softens LO phonons 
mainly in the vicinity of the r point. To describe the total softeningof the LO branch one 
must also include the even r: mode (see figures 2 and 5 in KMII). 

It is noteworthy that the non-locality of monopolar I‘t exciton manifesting itself in 
thecovalentfactorRr:(q) (seeequation(2.8))improvesboththetheoreticaldescription 
of the neutron scattering data for dispersion curves and thecalculations of elasticmoduli. 
This factor can be represented in the form (KMI, KMII) 

NN 

R,:(q)=E(l-cosq*R,)  (4.2) 
R” 

which turns into zero in the long-wave limit q -+ 0. This symmetry rule makes the moduli 
cII  and cIz insensitive to the breathing mode influence, contrary to the usual local CDD 
model (see e.g. Mahler and Engelhardt 1971). Hence, in our hybrid iteration procedure 
where the elastic moduli are used for defining the microscopic constants (see appendix), 
the contribution of the covalent factor is particularly important. 

All iteration regimes used in our calculations are listed in table 1. Table 2 contains 
the parameters of the dynamic matrix and the calculated values of the long-wave data. 
To check our approach we used several fitting procedures (columns A to Fin tables 1 
and 2). 

(i) Models A and B use the hybrid method of the appendix. When including the non- 
local corrections for r: CDD mode (model B) the RMs was 22% better than in the case 
of Rr; = 1 (model A). The calculated phonon spectrum of model B demonstrates slight 
deviations from the experimental data for TA[~OO] and LA[I 111 branches, although the 
general consistency is rather satisfactory. 

(ii) The free fit of models C and D starts from the value of dipole rigidity K ,  of the 
sulphur shell, which is taken from the EuS fitting; all other parameters are obtained 
along the proceduresof modelsA and B, respectively. The assumptionof K Z  invariability 
is justified by the proximity of dipole excitation energjes of S ions in both sulphides. 
As a result the RMS deviation for the ‘covalent’ model D is 10% better than for the 
‘conventional’ model C. We find therefore that the decrease of RMS deviation due to 
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Table 1. The models of SmS,, spectrum fit: 1, Sm ion; 2, S ion; F, fitted phenomenological 
constants; M, the constantscalculated in the hybrid method using the macroscooicdataand 
fined Fconstants (see appendix). 

A B C D E F  

Full 
ion-ion 
interaction 

Shell-shell 
interaction 

CDD 
parameters 

Ion and 
shell 
charges 

Covalent 
factor 

M 
M 
F 
F 
M 
M 

F 
F 
F 
F 
F 
F 

M 
M 
F 
F 

F 
M 
M 

no 

M 
M 
F 
F 
M 
M 

F 
F 
F 
F 
F 
F 

M 
M 
F 
F 

F 
M 
M 

yes 

F F F  
F F F  
F F F  
F F F  
F F F  
F F F  

F F F  
F F F  
F F F  
F F F  
F F F  
F F F  

F F F  
EuS EuS F 
F F F  
F F F  

F F F  
F F F  
F F F  

no yes no 

F 
F 
F 
F 
F 
F 

F 
F 
F 
F 
F 
F 

F 
F 
F 
F 

F 
F 
F 

involving the covalent factor is more essential for the hybrid method (22%) using the 
macroscopic constants in the fitting procedure. This is because the non-local breathing 
modeunlikethewnventionalonedoesnotcontribute toelasticmoduli. The macroscopic 
parameters obtained in these two models are close enough to the experimental values. 
The phonon dispersion curves of model D are plotted in figure 2. 

(iii) In models E and F the parameter K, was also variable, but both RMS deviations 
and final Kz values are practically the same as in the models C and D, respectively, which 
confirms the assumption of invariability of the S ion dipolar rigidity in both sulphides. 

Our preliminary calculations of the SmS(B) phonon spectra based on the second- 
order perturbation theory (KMI, KMII) predicted that the softening of LO phonon modes 
isensured by the mutual actionof the localdipolar andnon-local monopolarcmmodes. 
A more accurate solution of dynamic equations confirms this picture and shows the 
overall 1 THzsofteningof~o[~~~]mode.Theessentialroleofthewvalentcontribution 
is demonstrated by the models B, D and Fin comparison with the models A, C and E, 
respectively. As follows from the general theory (KMI, KMII) the enhancement of non- 
local rl excitation is responsible for the softening of LO(L) vibration, in comparison with 
the EuS spectrum, and the softening of Lo(T) phonon is the direct consequence of the 
softening of electronic f-d transitions in RE open shells, although in model B the 
change in the S m S  coupling constant also plays an essential part. In all the models 
the polarizability of Sm ions is practical1 the same (a, = 3.24-3.33 A3) and exceeds 
substantially that for Eu ions (al = 2.47 13). 
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Table 2. Mtcroxopic and macroscopc parametcrs of the models of table 1 Enpcnmental 
values of clastic modkL (Denternnl1976), high.frequenc) dielcctnc constant c (Ghntherodl 
and Holtzberc 1976) and sulohur Dolmabtlm (I, (Tessmnn el a/ 1953) corresoond to first 
and secondcoium'of the table (hybrid methdd).-ihe polarizability misin A3..'Here and in 
subsequent tables the f o r m  and CDD constan& are in e'!/-', the elastic moduli are in 
lO"dyncm-' and b is the RMS deviation for the experimental points included in the fit in 
THZ. 

A B C D E F 

K, 

z 
Y, 

18.2 
-2.53 

0.522 
-0.051 
-1.78 

0.45 

20.4 
-3.05 

0.123 
-0.381 
- 1.86 

0.286 

203 
140 

1.05 
0.335 

1.83 
4.07 

-4.07 

1.2w 
0.110 
0.250 
0.470 

6.000 
10.53 

3.24 
4.70 

0.149 

16.1 
-1.98 

0.292 
-0.036 
-1.34 

0.442 

20.4 
-3.09 
-0.465 
-0.603 
-2.42 

0.022 

299 
206 

1.34 
0.383 

1.68 
4.74 

-4.74 

1.200 
0.110 
0.250 
0.470 

6 . W  
10.531 

3.7.4 
4.70 

0.122 

19.9 
-2.76 

0803 
-0.310 
-2.24 

0.675 

225  
-2.97 

2.36 
-1.31 
-1.59 
-0.726 

219 
1 35 

0.654 
0.355 

1.96 
4.36 

-4.43 

1.262 
0.179 
0.290 
0.540 

7.854 
13.391 

3.30 
5.54 

0.096 

20.0 
-2.84 

0.644 
-0.285 
-2.16 

0.705 

22.2 
-2.89 

1.92 
-1.27 
-1.88 
-0.791 

217 
135 

0.876 
0.2w 

1.57 
4.36 

-4.38 

1.308 
0.213 
0.288 
0.578 

7.632 
13.298 

3.33 
5.42 

0.087 

20.0 
-2.73 

0.843 
-0.321 
-2.22 

0.655 

22.5 
-3.02 

2.32 
- 1.21 
-1.M) 
-0.691 

212 
127 

0.620 
0.336 

1.96 
4.36 

-4.40 

1.272 
0.193 
0.292 
0.553 

8.568 
14.344 

3.36 
5.74 

0.096 

20.1 
-2.86 

0.766 
-0.328 
-2.15 

0.732 

22.2 
-2.78 

2.09 
-1.31 
-2.01 
-0.862 

218 
142 

1.06 
0.100 

1.97 
4.36 

-4.46 

1.330 
0.232 
0.292 
0.598 

7.556 
13,253 

3.33 
5.39 

0.086 

Thus one can conclude that it is the softening of the excitonic spectrum involving the 
transitions in Sm open shells that is responsible for the renormalization of the phonon 
spectrum in a narrow-gap semiconductor SmS,,, in comparison with that in a wide-gap 
semiconductor EuS. Two of these excitons (rg and I&) can be treated as local Frenkel 
states, but the monopole exciton is essentially non-local. 

5. Cation-substituted Sm, -32 and high-pressure phase SmS,G, 

Exciton softening is expected to be particularly prominent in the mixed-valence semi- 
conductors. Moreover, the soft breathing mode according to the theory of excitonic 
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r ”  , 

Figure 2. Calculated phonon spectrum of 
SmS,Bl fiued within model D of tables 1 
and 2 including the covalent factor. The 
value of K2 is the same as for the EuS 
spectrum. The experimental poinu are 
denoted by: (0) LO, LA; (0) TA,. TO,. 

_ _ _  

r 11001 x i i i o i  r [IIII  

4 Othersymbolsasin figure 1. 

instability plays the key part in formation of the ground state of the MV semiconductor 
(Stevens 1976, Kikoin 1984). Therefore it is natural to conjecture an essential con- 
tribution of electron(exciton)-phonon interaction (EPI) to the phonon renormalization 
in those systems. The most famous and thoroughly investigated MV compound is cation- 
substituted SmS. It is the chemically collapsed solid solution Smo.75Yo.uS, where distinct 
anomalies in longitudinal phonon branches and extra dispersionless mode were found 
forthe first timeintheneutronscatteringexperiment (Mooketal1978). Lateron,similar 
anomaliesin LA branch werediscoveredalso in MV ‘goldSmS’(SmS(,)) underhydrostatic 
pressure (Mook er a1 1982) and in antiferromagnetic MV semiconductor TmSe (Mook 
and Holtzberg 1981). 

Although the first theoretical explanation of phonon anomalies (Entel et al 1979, 
Bilz eta1 1979a) did not distinguish between the MV states induced by extemal pressure 
and chemical substitution, more detailed analysis reveals quite different behaviour of 
LA and LO branches in the two cases. Our approach enlightens these distinctions and 
admits the modifications taking into account the specific features of pure MV semi- 
conductor and heavily doped solid solution. 

When analysing the EPI in narrow-gap SmS., we have discovered the essential 
contribution of covalent factor R,(q) in phonon renormalization. This contribution is 
enhanced substantially in MV SmS (see KMI, KMII), and it has different q dependence in 
perfect and doped systems. The latter difference is very important because it can be 
revealed directly in a neutron scattering experiment. Indeed, in a perfect system that 
possesses the symmetry of the point crystal group this q dependence is determined 
by selection rules (cf equations (2.6) and (4.2)), which forbid the on-site electronic 
transitions under the influence of fully symmetric lattice distortion (the envelope func- 
tion F(l) has a node on a central site). However, the lattice defectsor impurities weaken 
this rigid restriction owing to lowering of the point symmetry in a cell containing such a 
defect. The factor R, : (q )  was calculated in KMI for the case of two-band f-d semi- 
conductor, and the corresponding equation (4.3) of that paper can be generalized for 
the case of an imperfect lattice. This generalization results in a second-order covalent 
contribution to the phonon softening: 

@Irl)  = EZ1(q)[Fo + F J Z  - S(q)]{Fl[AZ + IVGolZS(q)]1sin(28) 
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Here F0., are the envelope functions on the central and NN sites, respectively, S(q) is a 
structure factor 

A S Mishchenko and K A Kikoin 

NN 

S(q) = exp(iq RI) (5.2) 
I 

go is a Green function 

(5.3) 

Vis the hybridization matrix element defining the dispersion EC." of the conduction and 
valence bands of a two-band semiconductor, 2 is the coordination number, A is the 
normalization factor for the band wavefunction defined in a NN tight-binding approxi- 
mation by the equation AZ + ZIVgolz = 1, and B is the measure of fractional valence. 
The additional contribution Fo in the double brackets of (5.1) imitates the contribution 
of on-site transitions allowed in the defect lattice. 

The q dependence in , is determined mainly by the factor [Z - S(q)] at any realistic 
values of A,  V and 6 (see KMI); hence the degree of imperfection can be characterized 
by the parameter 

K - I  = F,F~l[tsin(zB)F, + (v~G, COS(~B)I. (5.4) 
The phonon spectra for MV phase of SmS were calculated within the same scheme as 

those for black SmSIB), but with additional fitting parameter K. Besides, it was necessary 
to introduce a coupling constant C 1 ( l l )  describing the contribution of NN Sm ions to 
the breathing CDD in addition to Sm-S coupling constant Gl(12) and non-central RINNN 
forces (Y, /3, y instead of the central-type interactions in semiconducting SmS,),Both 
these interactions are induced by essentially delocalized open shells of Sm ions in the 
MV state. 

However. this approach has turned out to be insufficient for describing the optical 
branches accurately (see below); hence we have excluded from our fitting procedure the 
dipole CDD mode, which influences mainly the optical phonons, and have focused our 
attention on revealing the role of breathing CDD mode r: in LA anomalies. 

When extracting the model parameters from the experimental data we ran into the 
problem of the lack of experimental information on the phonon spectra of the high- 
pressure phase of sms[G). Only direct neutron measurements for LA branch (Mook ef al 
1982) and optically determined frequencies in Lo(T) and LO(L) points (Travagliii and 
Wachter 1985, Giintherodt el nl1978) are available. Some additional information can 
be extracted from the LA(L) and LA,,(X) frequencies, which are known for both black 
and gold phases. Experimentally detected vibration hardening of these frequencies in 
the gold phase could be ascribed to the change of RI parameters due to lattice collapse 
because the coD(f: ) contribution is symmetry-forbidden just for these points. Hence 
we use the scaling coefficient 

~,LA(G)/w~L.LA(B) = w~.LA(G)/&.LA(B) = 1.37 
for obtaining the shift of TA branches of SmS(G) from the known frequencies for SmSIB) 
(TA branches are not disturbed by the breathing CDD mode). Figures 3 and 4 show the 
results of theoretical fitting together with the experimental data for the phonon spectra 
of SmS(,, under pressure and Sm0,,;Yo.& 

Thus, our calculations show the relative contribution of both mixed-valence and 
imperfection effects. Our previous analyses ( K M I ,  KMII) havedemonstrated that without 
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taking into account the covalent factor the anomalous dispersion of the LA branch 
cannot be described correctly; the standard CDD(r1) model gives maximum phonon 
renormalization in the middle of the TL direction in the Brillouin zone, whereas the 
covalent contribution shifts this maximum towards the L point in accordance with the 
experiment. Here we see that the imperfection 'smoothes' the q dependence of @,(q).  
This effect on be described by the simplified equation (5.1) using parameter K from 
(5.4): 

a$)(q) - {l + K - q Z  - S(q)]}2. (5.5) 

Figure 5 illustrates this smoothing quantitatively. 
As a result in more dirty Smo,75Yo.zsS the covalency effect is manifested less sharply 

than in the high-pressure SmS(G) (see figures6(a) and (b)). In very dirty crystals (K-+ -) 
the symmetric q dependence prescribed by the point CDD model (Matsuura et a1 1980) 
for the LA phonon renormalization 6w,(q) should be restored. Quantitatively, this 
picture is seen from tables 3 and 4. The ws deviation is essentially lower for model B, 
which involves the covalent factor ( 5 . 9 ,  than for model A, based on conventional point 
CDD theory, whereas the value of K in the best fits for Sq.75Yo.uS is a factor 14 higher 

It should be emphasized that the imperfection also influences the contribution of 
CDD modes to tbeelasticmoduli. We haveseen in the previoussection that the symmetry 

than that for SmSp). 
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Table 3. Microscopic parameten and elastic properties of Smo.nYo.uS fitting models (see 
notation in table 2). The experimental elastic moduli alter for the various samples and 
temperatures. The ranges of experimental values are taken from Denier et a1 (1976). Mook 
erd(1978) andMookand Holhberg (1981) 

A B C D 

8.40 
1.18 

0.031 

0.153 
0.363 

0.98 

-1.25 
' 0.44 

1.44 
0.395 

- 

0.107 

8.29 8.23 
1.22 1.23 

0.043 0.041 
0.87 0.69 
0.170 0.118 
0365 0.316 

-1.38 -1.06 
-0.02 0.087 

0.757 0.00 
0.766 0.563 

9.41 - 
not fitted 

0.094 0.169 

8.50 
1.05 

0.172 
0.76 
0.086 
0.309 

-0.89 
0.132 

0.00 
1.30 

7.75 

0.157 
. , , . , , , , 

Calculated Experimental 

C,, 1.185 1.437 1.135 1.457 0.9810 1.35 
C,, -0.849 -0.67 -0.897 -0.574 -0.3510 -0.50 

, -,, .il, _ . l ~ ~  ~, . 

CU 0.31 0.31 0.31 0.31 0.29to 0.31 
B -0.171 0.03 -0.220 0.103 0.05to 0.16 
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Table4. Microscopic parametersandelasticpropertiesofSmS&tingmodeln (see notation 
in table 2). The experimental value of B is taken from Keller era1 (1979). 

A B 

8.31 8.07 
0.32 0.69 

0.72 0.79 
1.48 1.49 

-0.23 -0.36 
0.65 0.62 

-1.12 -1.1s 
-0.13 -0.04 

2.10 1.44 
0.495 2.32 

- 0.66 

0.230 0.187 

Calculated Experimental 

C, I 1.379 1.925 - 
C12 -0.689 -0.193 - 
C44 0.236 0.297 - 
B 0.0007 0.513 0.52 

rules cancel out the influence of the on-site electronic transitions on the long-wave part 
of acoustic branches. The violation of the point crystal symmetry by impurities and 
intrinsic defects removes this restriction. As a result we obtain a noticeable contribution 
tothemoduli Clland C12,whichdependsonthedegreeofimperfection. Experimentally, 
the bulk modulus B in the high-pressure SmS,, is larger than in the cation-substituted 
Sm,-,Y,S (see tables 3 and 4). We suppose that the disorder-induced contribution to 
the long-wave acoustic phonons is responsible for this difference. Indeed, the fitting 
procedure for SmS<,, with smallvalueofrc(mode1 B of table4)givesexcellent agreement 
with the expenmental value of E, whereas the point CDD model A gives a lattice close 
to instability. The same procedure results in satisfactory theoretical description of 
the elastic tensor for highly imperfect Smo.75Yo.25S (model B of table 3 with covalent 
contribution). The point cDD model A gives a statically unstable lattice (E < 0). 

It is instructive that in the most successful models A and B we were forced to exclude 
the experimental LO points from the fitting procedure. In these models the LO branch 
turns out to be softened essentially near the L point almost right to closing the gap 
between optic and acoustic parts of the phonon spectrum, in dramatic disagreement 
with experiment (see figure 4). Our attempts to include the LO phonons in the fitting 
procedure with and without non-local corrections (models C and D for Smo,,,Yo,,,S) 
resulted in an unreasonable picture for the breathing CDD contribution; the coupling 
constant for cDD-induced NN Sm-S interaction G1(12) tends to zero, and one should 
ascribe all anomalies to NNN interaction, which seems to be an unphysical result. 

We think that the failure of our non-local CDD model in the description of the LO 
branch is connected with the essentially non-adiabatic regime of interaction between 
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TableS. Microscopic parameters and elastic properties ofTmSe fitting models (see notation 
in table 2). The values of elastic moduli are delermined from the long-wave pan of the 
phonon spectrum (Mwk and Holtzberg 1981) 

A 12 8.89 
~ 

BU 0.73 ~~ 

9 0.55 
811 0.81 
YII -0.20 

8% -0.73 
Yn 0.15 

G,(lZ) 1.96 
G,(11) 0.80 

an 0.42 

IC 24.5 

6 0.142 

Calculated Experimental 

C,, 1.476 1.85 
C12 -0.445 -0.65 c 0.m ~ 0.26 
B 0.195 0.18 

theoptical phonons and the breathing electronicmode. Aconventional adiabatic picture 
should fail for the case of extremely soft electronic (excitonic) transitions involved in 
CDD modes. Apparently, the resonance mode in the gap between the optic and acoustic 
branches (Mook el a1 1978, Stiisser el a1 1982) is the direct manifestation of this non- 
adiabaticity. In a forthcoming paper, the non-adiabatic EPI will be included in the 
theoretical description. Preliminary calculations show that insertion of the resonance 
interaction removes the discrepancies between the theory and experiment for the LO 
branch. 

6. Thulium selenide 

The phonon spectrum of TmSe demonstrates the same anomalies as all other MV rare- 
earth compounds with NaCl structure, i.e. the 'dip' in the  LA[^ 1 11 branch and negative 
C,* modulus (Mook and Holtzberg 1981). As to the gap dispersionless mode, the 
experimental situation is still uncertain (Stiisser ef a1 1982). The specimen used in the 
neutron scattering experiment was even more imperfect than the Smo.,sYo.uS sample, 
and the value of the imperfection parameter K = 24.5 in OUI best fit (table 5, figure 
7) reflects this situation. Taking into account the covalent factor gives no essential 
improvement in comparison with the conventional point cDD(f,) model (cf section 5). 
One point on the LAIIOO] branch 'slips' out of the theoretical curve, but it is unclear 
whether this discrepancy results from the theoretical shortcomings or from the experi- 
mental uncertainty. 
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q 

Figurel. Calculated phonon spectrum of TmSe. Symbols as in figure 2. 

7. Summary 

AU the above results together with the successful description of the phonon spectra of 
SmB6 within the same theoretical approach (Alexeev el al 1989) corroborate the 
reliability of the excitonic mechanism of the mixed-valence fluctuations, which are 
responsible for both the phase transition to MV phase and the anomalous phonon 
renormalization in RE semiconductors with unstable valence. Moreover, our under- 
standing of the microscopic nature of this phenomenon permits us to analyse critically 
the previous approaches to EPI in these systems. 

Early rough phenomenological theory involving local r: and Tg CDD modes (Bilz 
el a1 1979) seizes the main anomalies of the phonon spectra but the model seems to  be 
oversimplified to extract all essential physical information from the theoretical 
description. For example, the coupling constants for r: and T u  modes are taken to be 
equal because both dipole and monopole fluctuation modes were assumed to be highly 
localized. As a result the role of the dipole mode was exaggerated, and in the LA(L) 
point where the r: mode gives no contribution, the theory gave 15% discrepancy with 
experiment. Our microscopic approach predicts essentially more delocalized breathing 
mode, and easily removes this discrepancy. The model of Bilz et a1 draws also on the 
I'h sulphur polarizability to describe the LA(L~TA(L) splitting. However, this mode 
was not registered in the Raman spectra of Sq,75Yo.uS (Giintherodt ef a1 1981b). 
Apparently, this splitting is connected with the screened Coulomb forces, because 
inclusion of this contribution to the dynamic matrix gives overall agreement between 
the experiment and theory (cf the Born-von Karman fitting by Mook and Nicklow 
(1979)), with the exception of the anomalies in longitudinal branches. 

The importance of Coulomb interaction is confirmed by increased LA(L)-TA(L) 
splitting in gold SmS in comparison with cation-substituted Smo.,Y0,,S because the 
screening in the latter is more effective due to the donor properties of component Y. 
Besides, one can mention the increase of LA(X)-TA(X) and LA,TA~(M)-TA~(M) splitting 
in the MV semiconductor SmB6 (Alexeev et a1 1989) in comparison with that in metallic 
L a 6  (Smith et al1985). Another contribution to LA-TA splitting in the Iz direction 
should be provided by the f-d hybridization matrix element dependence on the bond 
bending between NN Sm ions (Grewe and Entell979). 
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Thorough calculations of vibrational spectmm including phonon damping were 
published by Wakabayashi (1980). He restricted himself to a conventional adiabatic 
scheme and described the damping by introducing a phenomenological relaxation time. 
However, he had to include additional breathing CDD of sulphur shells to obtain a 
satisfactory description of anomalies in the longitudinal branches. Apparently, this 
artificial mode imitates the real breathing CDD distortions of Sm shells induced by the 
motion of NNN of the central Sm ion (see G1(ll) in tables 3 and 4). Nevertheless, we 
recalculated the phonon spectrum of SmS within the Wakabayashi model, and found 
that the FNS minimum with his fitting parameters really is a local extremum, which 
allows further reduction by continuing the iteration process.? 

Previous attempts at a microscopic description of EPI were undertaken by Benne- 
mann and Avignon (1979) and Matsuura et a1 (1980). However, both models used the 
one-centre approximation for electronic transitions and neglected the q dependence of 
the denominator in the electronicsusceptibility. Hence, eventually, these attempts have 
returned back to the phenomenological description of the local CDD theory. 

The only attempt at a non-local description was developed by Entel eta/ (1979). who 
used explicitly the parity ban on the intrasite f-d transitions. But when constructing the 
non-local intersite hybridization matrix elements, Entel et a1 (1978) neglected the real 
transformation properties of the d orbital (cf KMI), and obtained an incorrect q depen- 
dence of the matrix elements. However, furthercalculations of phonon renormalization 
did not exploit this dependence because the main effect was ascribed to the influence of 
Y impurities, which breaks the inversion symmetry in the crystal elementary cell and 
allows local electronic transitions in the RE shells. Finally the model again returns to the 
local description of conventional CDD theory. 

The Green function theory of Kuroda and Bennemann (1981) goes beyond the 
adiabatic approximation in describing the EPI induced by the local f-d transitions. This 
treatment seems to be the most promising for describing the interaction between the 
soft excitations in the electron subsystem and the optical phonons, provided the non- 
local transitions are taken into account. This route is preferable for describing the 
resonance mode in comparison with the effective local vibration model ascribing finite 
mass to the electron mode (Pastor eta1 1987). 

In conclusion, we tried to trace the evolution of local electronic contribution to the 
phonon spectra renormalization in a sequence of RE semiconductors from EuS with 
stable valence to SmSiG, with mixed valence, and revealed the decisive part of charac- 
teristic excitonic-type modes describing the monopole and dipole f shell distortions. The 
prominent breathing mode in these systems turns out to be essentially non-local, and 
just in the phonon spectra this non-locality manifestsitself most graphically. Hence, one 
can verify the microscopic models of valence fluctuations by studying the anomalies in 
the phonon dispersion curves. 

Appendix 

One often meet the situation of incomplete experimental data on phonon spectra. The 
extreme case is the absence of neutron scatteringmeasurementsof the phonondispersion 

t The phonon spectrum presented in figure 2 of Wakabayashi (1980) cannot wmcspond to his best-fit 
parameters. becaureatzemSm-Sminteractionparametenofrumodel theLA(L) andTA(L) frequencies have 
to be degenerate. 
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curves when only elastic moduli and maybe infrared optical data are available. In this 
case the model parameters defining the dynamic matrix should be determined from the 
macroscopic data in a unique way. When one can also use information on some phonon 
branches a ‘hybrid’ procedure can be proposed that combines the free fitting to the 
experimental curves by varying the model parameters with derivation of some par- 
ameters from the macroscopic data and above variable parameters. This method is 
competitive even in the case of full experimental information on the dispersion curves 
because it reduces the effective ‘dimension’ of the parameter space in the fitting pro- 
cedure and optimizes the consistency between the macroscopic description of the lattice 
and the microscopic calculation of the phonon branches. 

When describing the phonon spectra of SmScB) along the Zeyher and Kress (1979) 
procedure in section 4 we determined uniquely the microscopic parameters from seven 
macroscopic quantities, i.e. elastic moduli C,l, CI2, C,, frequencies uJLo(r), om(r), 
dielectric constant E, and sulphur ion polarizability a2. Eight parameters defined in this 
way are denoted by symbol ‘ M  in table 1 (two of them are connected, Y ,  = -Yz,  
hence this procedure is unique). This procedure gives only qualitative consistency with 
experiment, and therefore it was modified by using the above hybrid approach where 
all parameters except those denoted by ‘ M  in columns 1 and 2 of table 1 were fitted to 
the phonon cuwes. These parameters are denoted by the symbol ‘F. M parameters 
were rederived at each step of the fitting procedure from the macroscopic data and 
variable F parameters. Our procedure allows us both to sustain the consistency of the 
long-wave part of the phonon spectrum with the macroscopic data and to avoid the 
unphysical local minima in a multidimensional parameter space during the iteration 
routine. 

In fact, the macroscopic parameters are often measuredwith large error and disagree 
with theconstantsextrapolatedfrom thephononspectra(seee.g. discussionofthelong- 
wave phonons for alkali halides in Bilz etaf (1974)). Hence, the RMS minimum found by 
meansof the hybrid method can be used as the starting point for the free fittingprocedure. 
Thus the shortest path to the global minimum can be found. 

Here we try the hybrid fitting method for the simple rock-salt lattice. It should be 
emphasized, however, that this method can be particularly useful for low-symmetry 
lattices where the search for the global minimum is a much more difficult task due to 
high dimensionality of the parameter space. The hybrid fitting procedure admits partial 
compensation of the growing number of parameters because additional independent 
componentsof the elasticity tensor predetermine thevalues of some of these parameters. 
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